7 research outputs found

    How explicit are the barriers to failure in safety arguments?

    Get PDF
    Safety cases embody arguments that demonstrate how safety properties of a system are upheld. Such cases implicitly document the barriers that must exist between hazards and vulnerable components of a system. For safety certification, it is the analysis of these barriers that provide confidence in the safety of the system. The explicit representation of hazard barriers can provide additional insight for the design and evaluation of system safety. They can be identified in a hazard analysis to allow analysts to reflect on particular design choices. Barrier existence in a live system can be mapped to abstract barrier representations to provide both verification of barrier existence and a basis for quantitative measures between the predicted barrier behaviour and performance of the actual barrier. This paper explores the first stage of this process, the binding between explicit mitigation arguments in hazard analysis and the barrier concept. Examples from the domains of computer-assisted detection in mammography and free route airspace feasibility are examined and the implications for system certification are considered

    Nest-seeking rock ants (temnothorax albipennis) trade off sediment packing density and structural integrity for ease of cavity excavation

    No full text
    We investigated excavation and nest site choice across sediment-filled cavities in the ant Temnothorax albipennis. Colonies were presented with sediment-filled cavities, covering a spectrum from ones that should be quick to excavate but will form a weak enclosing wall to those that should be slow to excavate but form a strong wall. Overall, colonies only showed a significant preference for cavities that were fastest to excavate over those that were slowest. The speed of decision making and moving appears para-mount over the suitability of the sediment for forming an enclosing wall. The mechanism behind the choice is the differential between the rates at which alternatives are excavated and accumulate ants. The rates for a particular type of cavity were unaffected by the type with which it was paired. This suggests that there is no significant competition between sites during the decision-making process. Certain colonies were able consistently to discriminate across more closely matched alternatives. These colonies required a greater number of ants to be present and took longer before beginning to move. A race is run between alternatives to become habitable but the process may be tuned across colonies such that it may run for longer and an incorrect or split decision is less likely
    corecore